This study investigated the effectiveness of a pectin-nano zero-valent iron-based nanocomposite in adsorbing heavy metals in bimetallic form (chromium‑lead mixture), along with assessing its antibacterial properties. The nanocomposite was synthesized using a straightforward dispersion method, employing eco-friendly components like biocompatible pectin sourced from banana peels and nano-scale zero-valent iron. Analytical characterization confirmed the formation of stable, nano-crystalline particles with active interactions between the functional groups of pectin and nano iron. Batch adsorption experiments optimized various parameters such as pH, adsorbent dosage, contact time, metal ion concentration, and temperature to enhance bimetal removal from water. The optimal conditions were determined as pH 8.0, a temperature of 40 °C, 1.0 g/L adsorbent dosage, 75 mg/l initial bimetal concentration, and a contact time of 30 min. Further assessments revealed that the nanocomposite did not induce phytotoxic or ecotoxic effects, confirming its non-toxicity and environmental safety. Biocompatibility studies conducted using zebrafish models showed no adverse effects on hatching, survival, or heart rate. These findings underscore the potential of the nanocomposite as a sustainable and efficient solution for heavy metal remediation in water treatment process.
Read full abstract