The rebinding of CO, O2, NO, methyl, ethyl, n-propyl, and n-butyl isocyanide to isolated alpha and beta chains and intact hemoglobin at pH 7, 20 degrees C was examined both during and after a 30-ns dye laser pulse. The resultant absorbance changes were analyzed in terms of a linear three-step reaction scheme: Hb + X in equilibrium with C in equilibrium with B in equilibrium with A or HbX, where A is the final bound state, and C and B are geminate states. Rate constants were assigned for each of the transitions in this mechanism using fitting procedures described previously for analyzing ligand rebinding to sperm whale myoglobin at room temperature (Gibson, Q. H., Olson, J. S., McKinnie, R. E., and Rohlfs, R. J. (1986) J. Biol. Chem. 261, 10228-10239). Five major conclusions were obtained. First, initial geminate recombination phases for the NO and O2 complexes of hemoglobin and its isolated subunits exhibit half-times equal to approximately 12 and approximately 440 ps, respectively. These values are in excellent agreement with more direct, picosecond measurements of the geminate recombination of HbNO (Cornelius, P. A., Hochstrasser, R. M., and Steele, A. W. (1983) J. Mol. Biol. 163, 119-128) and HbO2 (Friedman, J. M., Scott, T. W., Fisanick, G. J., Simon, S. R., Findsen, E. W., Ondrias, M. R., and MacDonald, V. W. (1985) Science 229, 187-229) following extremely short laser pulses. Second, the correspondence between our nanosecond measurements and the published picosecond data suggests strongly that the intrinsic photochemical yield of all ferrous, hexacoordinate heme complexes approaches one. Third, the major differences between the isolated alpha and beta chains involve the rate of ligand migration to the solvent, kC----X and the extent of recombination from the second geminate state, C, as measured by the ratio kC----B/kC----X. Fourth, for both isolated chains and intact hemoglobin, the rate and equilibrium constants for the formation of the initial O2 geminate state starting from ligand in the solvent (i.e. kX----B and KX----B) are 5-10 times greater than the corresponding parameters for the formation of the first CO geminate state. Fifth, the rate-limiting step for NO, O2, and isonitrile binding to hemoglobin and its isolated subunits is ligand migration up to the initial geminate state (i.e. kX----B). In the case of CO binding, both migration to state B and iron-ligand bond formation (kB----A) affect the overall, bimolecular association rate constant.
Read full abstract