Hydroxylation of cyclohexane with m-chloroperbenzoic acid was examined in the presence of an iron(III) complex supported by a trianionic planar tetradentate ligand. The present reaction system shows a high turnover number of 2750 with a high product selectivity of alcohol (93%). The turnover frequency was 0.51 s-1, and the second-order rate constant (k) for the C-H bond activation of cyclohexane was 1.08 M-1 s-1, which is one of the highest values among the iron complexes in the oxidation of cyclohexane so far reported. The present catalytic system can be adapted to the hydroxylation of substrates having only primary C-H bonds such as 2,2,3,3-tetramethylbutane as well as gaseous alkanes such as butane, propane, and ethane. The involvement of an iron(III) acyl peroxido complex as the reactive species was suggested by spectroscopic measurements of the reaction solution.