Measurement of infrared spectroscopy has emerged as a significant challenge for carbon materials due to the sampling problem. To overcome this issue, in this work, we performed measurements of IR spectra for carbon materials including C60, C70, diamond powders, graphene, and carbon nanotubes (CNTs) using the photoacoustic spectroscopy (PAS) technique; for comparison, the vibrational patterns of these materials were also studied with a conventional transmission method, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, or Raman spectroscopy. We found that the IR photoacoustic spectroscopy (IR-PAS) scheme worked successfully for these carbon materials, offering advantages in sampling. Interestingly, the profiles of IR-PAS spectra for graphene and CNTs exhibit negative bands using carbon black as the reference; the negative spectral information may provide valuable knowledge about the storage energy, production, structure, defect, or impurity of graphene and CNTs. Thus, this approach may open a new avenue for analyzing carbon materials.