While there are numerous brain regions that have been shown to play a role in this AUD in humans and animal models, the central nucleus of the amygdala (CeA) has emerged as a critically important locus mediating binge alcohol consumption. In this study, we sought to understand how relative gene expression of key signaling molecules in the CeA changes during different periods of abstinence following bouts of binge drinking. To test this, we performed drinking in the dark (DID) on two separate cohorts of C57BL/6J mice and collected CeA brain tissue at 1 day (acute) and 7 days (protracted) abstinence after DID. We used qRTPCR to evaluate relative gene expression changes of 25 distinct genes of interest related to G protein-coupled receptors (GPCRs), neuropeptides, ion channel subunits, and enzymes that have been previously implicated in AUD. Our findings show that during acute abstinence CeA punches collected from female mice had upregulated relative mRNA expression of the gamma-aminobutyric acid receptor subunit alpha 2 (Gabra2), and the peptidase, angiotensinase c (Prcp). CeA punches from male mice at the same time point in abstinence had upregulated relative mRNA encoding for neuropeptide-related molecules, neuropeptide Y (Npy) and somatostatin (Sst), as well as the neuropeptide Y receptor Y2 (Npyr2), but downregulated Glutamate ionotropic receptor NMDA type subunit 1 (Grin1). After protracted abstinence, CeA punches collected from female mice had increased mRNA expression of corticotropin releasing hormone (Crh) and Npy. CeA punches collected from male mice at the same timepoint had upregulated relative mRNA expression of Npy2r, Npy, and Sst. Our findings support that there are differences in how the CeA of male and female mice respond to binge-alcohol exposure, highlighting the need to understand the implications of such differences in the context of AUD and binge drinking behavior.
Read full abstract