AbstractDue to the lower ionospheric thermal pressure and existence of the crustal magnetism at Mars, the Martian ionopause is expected to behave differently from the ionopause at Venus. We study the solar wind interaction and pressure balance at the ionopause of Mars using both in situ and remote sounding measurements from the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument on the Mars Express orbiter. We show that the magnetic pressure usually dominates the thermal pressure to hold off the solar wind at the ionopause at Mars, with only 13% of the cases where the ionospheric thermal pressure plays a more important role in pressure balance. This percentage at Venus, however, is up to 65%. We also find that the ionopause altitude at Mars decreases as the normal component of the solar wind dynamic pressure increases, similar to the altitude variation of the ionopauses at Venus. Moreover, our results show that the ionopause thickness at Mars and Venus is mainly determined by the ion gyromotion and is equivalent to about five ion gyroradii.