Large quantity of the antiviral drug arbidol is used for resisting virus infection like the Corona Virus Disease 2019 and influenza, resulting in unanticipated environmental pollution. Herein, to investigate the environmental risks of the unanticipated arbidol contamination, a novel in vivo sampling probe was developed based on a bromo-substituted porous organic polymer (Br-POP) and then adopted for tracking the bio-accumulation and bio-transformation of arbidol in living plants by coupling with a nano-electrospray ionization fourier-transform ion cyclotron resonance mass spectrometry (Nano-ESI-FT-ICR-MS) method. The established method showed good extraction performance towards arbidol with limit of detection (LOD) of 0.48 ng g−1, and relative standard deviation (RSD) of single-and multiple- probe of 2.2 and 14 %. Owing to the interactions between the Br-POP and the target analytes, as well as the fast analysis process of Nano-ESI-FT-ICR-MS, <6 min was cost for total sampling and analysis duration, achieving hourly tracking of arbidol and its metabolites in this work. During 21-d in vivo tracking, the concentration of arbidol in living plant stems increased rapidly within 6 h and peaked at 413.93 ± 47.09 ng g−1. Meanwhile, it was found that dissolved organic matters (DOM) had significant effect on arbidol behaviors in living plants, resulting in a decrease of the maximum concentration of arbidol in plant stems (152.70 ± 42.44 ng g−1) and the change of dominant metabolite of arbidol that the S-oxidation rather than N-demethylation product of arbidol was dominant with DOM participation. Additionally, the plant root secretion was found to be significantly altered by arbidol exposure. To summarized, the combination of in vivo SPME and the FT-ICR-MS analysis provide new and important information regarding arbidol contamination and related alternation of plant root metabolism.
Read full abstract