Electroactive polymers (EAP) are promising materials for creating electromechanical transducers. Among ionic EAP, ionic polymer-metal composites (IPMC), which are an ion-exchange membrane with metal electrodes on both sides, have been widely spread and well studied. The evolutionary development of IPMC results in ionic polymer-polymer composites (IP2C), in which polymer electrodes are used. To obtain IPMC actuators with platinum electrodes, the method of chemical reduction from the salt solution was chosen, and to obtain IP2C actuators with PEDOT electrodes, the method of in situ polymerization of the monomer on the membrane surface was chosen. Samples of 2x0.5 cm in size based on the MF-4SK membrane with a thickness of 290 μm were preliminarily kept in deionized water (H+ form) and in 0.1 M CuSO4 aqueous solution (Cu2+ form), after which their performance was studied in air, in deionized water, as well as in aqueous solutions of CuSO4 and NaCl. When applying a DC voltage and a sine wave AC voltage, a decrease in the maximum displacement and peak-to-peak displacement of the IPMC actuators and IP2C actuators with an increase in the ionic strength of the liquid was observed, except for the case of the IPMC actuator operation in CuSO4 aqueous solutions. In all considered media, the IPMC actuators and IP2C actuators in Cu2+ form displaced more strongly than the corresponding samples in H+ form, except for the IP2C actuators in deionized water. The largest peak-to-peak displacement was demonstrated by the IPMC actuators in Cu2+form when operating in air (5 mm) and the IP2С actuators in H+ form when operating in deionized water (8.4 mm).
Read full abstract