HypothesisElectrostatic-templated polymerization (ETP) is a recently developed strategy for robust fabrication of stable polyion complex (PIC) micelles with regulated size and morphology, yet the kinetics and mechanism about this one pot process remain elusive. ExperimentsIn ETP method, ionic monomers are polymerized in the presence of an oppositely charged ionic-neutral diblock copolymer as template. We investigate the monomer conversion and electrostatic assembly as a function of time, under different polymerization conditions of ionic strength, pH, template/monomer molar ratio and the presence of a cross-linker. FindingsThe template copolymer accelerates the monomer conversion and formation of PIC micelles dependent on ionic strength and pH. The process follows the “Pick-up” mechanism, where monomers first convert into oligomers which complex with template to induce further chain growth and electrostatic assembly. Introducing cross-linker hardly impacts the reaction kinetics and “Pick-up” route, while it creates PIC micelles containing cross-linked ionic network assembly with the template. Further removing the template by concentrated salt provides purified ionic nanogels. The disclosed findings not only provide a better understanding of the polymerization-assembly process, but also optimize the controls of electrostatic-templated polymerization for the rational design and fabrication of diverse PIC micelles and polyelectrolyte particles.
Read full abstract