The importance of recognizing and quantifying chemical anions/cations found in various types of samples, including environmental and biological samples, has been extensively studied. Recent findings suggest the possibility of health risks caused by organic compound dimethylarsinic acid (DMAs) rather than its inorganic arsenic metabolite. This article aims to fabricate polymeric-membrane electrochemical sensors with high sensitivity and selectivity for the cacodylic acid sodium salt dimethylarsinate (DMAs) based on silver diethyldithiocarbamate (AgDDTC) and CuIIphthalocyanine (CuPC) as novel neutral carriers and their applications. DMAs calibration relations and titrations were carried out using a potentiometric workstation equipped with a double-junction reference electrode, in conjunction with the fabricated working electrodes. Sensors revealed fast and stable anionic response with near-Nernstian slopes (-38.6 ± 0.9 and -31.5 ± 0.6 mV/decade), within concentration ranges (1.7 × 10-5 -1.0 × 10-2 and 3.0 × 10-5 -1.0 × 10-2 M) and detection limits (1.0 × 10-5 and 1.6 × 10-5 M) for AgDDTC- and CuPC-based sensors, respectively. Sensors are characterized by extended life-time, signal stability, high precision and short response times. Selectivity for the cacodylate anion over most common anions was tested for the proposed electrodes. Sensors were satisfactorily applied for DMAs quantification in biological matrices with recoveries ranging between 96.2 and 99.0%. Membrane sensors were interfaced with a flow-through system for continuous monitoring of DMAs. The sensors were tested for the assay of different amino acids based on their reaction with cacodylate, where reaction end points were monitored with the proposed electrodes using direct potentiometric determination and flow injection analysis (FIA). Potentiometric ion-selective PVC-membrane electrodes based on silver diethyldithiocarbamate (AgDDTC) and CuIIphthalothyanine (CuPC) provide adequate and reliable means for the determination of dimethylarsenate anion (cacodylate anion, DMAs). These membrane electrodes are easy to manufacture, they have the advantages of high selectivity and sensitivity, broad dynamic ranges, low detection limits, quick response times and cost effectiveness. Such properties make these sensors suitable for the assay of DMAs levels in aqueous solutions by direct potentiometry, flow injection and potentiometric titration, as well as in monitoring of the titration end points of the reactions between various amino acids and DMAs anion in aqueous solutions. Simple electrochemical membranes for dimethylarsinate (DMAs) were prepared, based on diethyldithiocarbamate (AgDDTC) and CuIIphthalocyanine (CuPC). - DMAs sensors were fabricated in two different modules: batch (for static) and flow-through (for hydrodynamic) approaches. - Levels of DMAs were determined in spiked biological samples. - AgDDTC-based sensors were successfully applied in the determination of several amino acids via potentiometric titration with DMAs.
Read full abstract