Reduced glutathione (GSH) is an endogenous tripeptide antioxidant which plays a crucial role in a variety of physiological and pathological activities. Although GSH is not present in any FDA-approved drug product, GSH dietary supplement products and compounded GSH drugs are available to patients in the US. Several incidents of toxicity have occurred in recent years due to endotoxin or otherwise contaminated GSH in compounded drugs. Efficient and sensitive analytical methods are needed for assessing and ensuring the quality of GSH substance and associated drug or dietary supplement products. Impurities A (L-cysteinylglycine), B (cysteine), C (oxidized L-glutathione) and D (γ-L-glutamyl-L-cysteine) are the main related impurities for GSH drug substance which have been detected and quantified by capillary electrophoresis and qNMR analytical procedures. However, there are no reported HPLC methods for detecting or quantifying the three main related impurities A, B and D even though numerous HPLC analytical methods have been reported for analyzing GSH and impurity C. In this report, an isocratic HPLC-UV analytical procedure was developed and validated for separating and identifying GSH and related impurities A-D as well as a newly identified degradant, L-pyroglutamic acid (pGlu), within 10 minutes with resolution (RS) more than 3. The LOD and LOQ were determined to be 0.02 % w/w and 0.05 % w/w, respectively, for impurities A-D and pGlu. Importantly, the optimized HPLC analytical procedure for GSH assay does not have interference from impurities A, B and D, providing highly specific results compared to the commonly used iodine titration method. The newly validated analytical procedure was applied to assess different commercial GSH bulk substance samples. The results suggest that the analytical procedure described in this work is suitable for quality assessment of GSH samples.