IntroductionNo study has investigated scan parameters in head and neck dual layer dual-energy computed tomography (DL-DECT). This study aimed to select the appropriate scan parameters in head and neck imaging by evaluating the scan parameter effects on the accuracies of CT numbers and conduct iodine quantification in DL-DECT. MethodsA multi-energy phantom was scanned using a dual layer CT (DLCT) scanner. Reference materials of iodine, blood, calcium, and adipose were used. A helical scan was performed by using reference and several protocols. Iodine density and virtual monochromatic images (VMIs) at the energy of 50, 70, and 100 keV were reconstructed. The iodine concentrations and CT numbers in each protocol were measured. Moreover, the absolute percentage errors (APEs) of iodine quantifications and CT numbers (reference vs. each protocol) were compared. Equivalence was observed when APEs between reference and each protocol was within 5%. Statistical analysis was performed using appropriate software. ResultsThe APEs between the high-tube-voltage and reference protocol were 23.7, 14.0, 8.8, and 8.1% for iodine reference materials with concentrations equal to 2, 5, 10, and 15 mg/ml, respectively. At 50 keV, APEs between the high-tube-voltage and reference protocols were greater than 5% except for calcium and adipose. At 100 keV, APEs between the high-tube-voltage and reference protocols were greater than 5% except for blood and calcium. ConclusionsThe high-tube-voltage protocol improved the accuracies of the measurement for iodine quantification and CT numbers. Additionally, the scanning parameters except for tube voltage had no effect on accuracies of iodine quantitation and CT numbers in the DLCT scanner. Implications for practiceThe use of the high-tube-voltage protocol will be recommended for more accurate material decomposition in head and neck DL-DECT.
Read full abstract