AbstractReflectivity inversion is a key step in reservoir prediction. Conventional sparse‐spike deconvolution assumes that the reflectivity (reflection coefficient series) is sparse and solves for the reflection coefficients by an L1‐norm inversion process. Spectral inversion is an alternative to sparse‐spike deconvolution, which is based on the odd–even decomposition algorithm and can accurately identify thin layers and reduce the wavelet tuning effect without using constraints from logging data, from horizon interpretations or from an initial model of the reflectivity. In seismic processing, an error exists in wavelet extraction because of complex geological structures, resulting in the low accuracy of deconvolution and inversion. Blind deconvolution is an effective method for solving the problem mentioned above, which comprises seismic wavelet and reflectivity sequence, assuming that the wavelets that affect some subsets of the seismic data are approximately the same. Therefore, we combined blind deconvolution with spectral inversion to propose blind spectral inversion. Given an initial wavelet, we can calculate the reflectivity based on spectral inversion and update the wavelet for the next iteration. During the update processing, we add the smoothness of the wavelet amplitude spectrum as a regularization term, thus reducing the wavelet oscillation in the time domain, increasing the similarity between inverted and initial wavelets, and improving the stability of the solution. The blind spectral inversion method inherits the wavelet robustness of blind deconvolution and high resolution of spectral inversion, which is suitable for reflectivity inversion. Applications to synthetic and field seismic datasets demonstrate that the blind spectral inversion method can accurately calculate the reflectivity even when there is an error in wavelet extraction.
Read full abstract