A large number of space activities are generating a high amount of undesirable space debris, which causes inevitable damage to spacecraft and satellites. Moreover, the damage assessment of ultrahigh-speed debris is a challenging task that requires both theoretical and ground-level experimental simulations. One should note that the location and damage degree can be preliminarily determined by measuring the impact flash spectrum, which provides basic data for damage assessment. Herein, the radiation spectrum of an ultrahigh-speed collision between plastic projectile and aluminum target is measured by using spectroscopic technology. The surface temperature of the colliding material, electron temperature, and electron density in the plasma are simultaneously retrieved by using a single-frame spectrum. The single-frame spectrum is separated into a continuous spectrum and a line spectrum by using continuous thermal radiation spectrum inversion material interface temperature and line spectrum inversion electron temperature and electron density in the plasma.
Read full abstract