Background: Lactation curve patterns are currently integrated in dairy cow’s management software. Lactation curve modeling is useful for monitoring individual yields for diet planning, determining optimum strategies for insemination and genetic evaluation. It also helps for predicting expected missing values on field records and gives concise summary of biological efficiency and persistency of dairy cows.Methods: The study was aimed to characterize the lactation curve pattern for crossbred dairy cattle using different non-linear models. During the period 1991 to 2018, daily milk yield (DMY) consisted of 281698 records of 750 crossbred dairy cows maintained at Livestock Farms. GADVASU, Ludhiana, were collected for the study. Different non-linear models viz. exponential decline function (EDF), parabolic exponential model (PEM), inverse polynomial model (IPM), gamma-type function (GTF), mixed log function (MLF) and Ali and Schaeffer model (ASF) were used for the analysis. The model(s) that best fit and describe the curve characteristics was selected on the basis of coefficient of determination (R2), coefficient of variation (CV), Akaike information criterion (AIC) and mean square error (MSE).Result: The study clearly revealed that the PRM gave highest fit to DMY data with R2, MSE, AIC and CV values of 98.10%, 0.087, -743.31 and 2.37%, respectively. The IPM had also best fitted the observed DMY data with highest R2 (98.05%), lower MSE (0.089), low AIC (-735.8972) and lower CV (2.40%) values. The fitting of observed DMY data with predicted DMY were also found to be higher in the MLF (R2= 96.46%, MSE= 0.159, AIC= -558.16 and CV= 3.21%) and GTF (R2= 95.85%, MSE= 0.190, AIC= -505.24 and CV= 3.50%), whilst the EDF and PEM Models depicted relatively low fit to the DMY data when compared with the other non-linear models. However, IPM and GTF models can be used for accurate prediction of daily milk yield in the crossbred cattle population because they were typical standard lactation curves.