A combined direct and inverse photoemission study of coinage metal corroles suggests that the latter technique, in favorable cases, can provide some additional information relative to electrochemical measurements. Thus, whereas inverse photoemission spectroscopy (IPES) provides relative electron affinities for electron addition to different unoccupied orbitals, electrochemical reduction potentials shed light on the energetics of successive electron additions. While all three coinage metal triphenylcorrole (TPC) complexes exhibit similar ionization potentials, they exhibit dramatically different inverse photoemission spectra. For Cu[TPC], the lowest-energy IPES feature (0.74 eV) is found to be exceedingly close to the Fermi level; it is significantly higher for Ag[TPC] (1.65 eV) and much higher for Au[TPC] (2.40 eV). These differences qualitatively mirror those observed for electrochemical reduction potentials and are related to a partially metal-centered LUMO in the case of Cu- and Ag[TPC] and a fully corrole-based LUMO in the case of Au[TPC]; the latter orbital corresponds to the LUMO+1 in the case of Ag[TPC].
Read full abstract