Living systems (LSs) must solve the problem of adapting to their environment by identifying external states and acting appropriately to maintain external relationships and internal order for survival and reproduction. This challenge is akin to the philosophical enigma of how the self can escape solipsism. In this study, a comprehensive model is developed to address the adaptation problem. LSs are composed of material entities capable of detecting their external states. This detection is conceptualized as "cognition", a state change in relation to its external states. This study extends the concept of cognition to include three hierarchical levels of the world: physical, chemical, and semiotic cognitions, with semiotic cognition being closest to the conventional meaning of cognition. This radical extension of the cognition concept to all levels of the world provides a monistic model named the cognizers system model, in which mind and matter are unified as a single entity, the "cognizer". During evolution, LSs invented semiotic cognition based on physical and chemical cognitions to manage the probability distribution of events that occur to them. This study proposes a theoretical model in which semiotic cognition is an adaptive process wherein the inverse causality operation produces particular internal states as symbols that signify hidden external states. This operation makes LSs aware of the external world.