BackgroundEsophageal cancer is one of the most prevalent malignant tumors and the sixth largest cause of tumor-associated death worldwide. Squamous cell carcinoma (ESCC) accounts for 85 % of all esophageal cancer cases. ESCC treatment remains to be significantly difficult. Corynoxine (Cory) is a tetracyclic hydroxyindole alkaloid isolated from Uncaria macrophylla. It is unclear whether Cory has an anti-tumor effect on ESCC. PurposeTo determine the anti-tumor activity of Cory and the associated mechanisms in ESCC. Study designCory's effects on proliferation, apoptosis, migration, and invasion, as well as the underlying molecular causes were assessed using two ESCC cell lines, KYSE150 and TE-1. A xenograft mouse model was then applied to evaluate the anti-tumor activity of Cory in vivo. MethodsWestern blot, assays including CCK-8, colony formation, EdU staining, TUNEL staining, cell scratch and Transwell, and a xenograft mouse model were used in this study. ResultsCory suppressed cell growth, provoked cell apoptosis, and hindered cell migration and invasion of ESCC cells. DUSP5 knockdown reduced the Cory-induced cell death and restored cell migration and invasion through ERK1/2 activation. Further analyses showed that Cory promoted DUSP5 expression via inhibiting EZH2 expression, leading to inactivation of ERK1/2 signaling and the subsequent cell growth inhibition of ESCC. In vivo experiments disclosed that Cory suppressed tumor growth of ESCC through upregulating DUSP5 expression. ConclusionsCory plays an anti-tumor role in ESCC by regulating EZH2-DUSP5-ERK1/2 signaling pathway. Cory may be promising to be a novel therapy for treating ESCC.
Read full abstract