Many models in mathematical physics are given as non-linear partial differential equation of hydrodynamic type; the incompressible Euler, KdV, and Camassa–Holm equations are well-studied examples. A beautiful approach to well-posedness is to go from the Eulerian to a Lagrangian description. Geometrically it corresponds to a geodesic initial value problem on the infinite-dimensional group of diffeomorphisms with a right invariant Riemannian metric. By establishing regularity properties of the Riemannian spray one can then obtain local, and sometimes global, existence and uniqueness results. There are, however, many hydrodynamic-type equations, notably shallow water models and compressible Euler equations, where the underlying infinite-dimensional Riemannian structure is not fully right invariant, but still semi-invariant with respect to the subgroup of volume preserving diffeomorphisms. Here we study such metrics. For semi-invariant metrics of Sobolev H^k-type we give local and some global well-posedness results for the geodesic initial value problem. We also give results in the presence of a potential functional (corresponding to the fluid’s internal energy). Our study reveals many pitfalls in going from fully right invariant to semi-invariant Sobolev metrics; the regularity requirements, for example, are higher. Nevertheless the key results, such as no loss or gain in regularity along geodesics, can be adopted.
Read full abstract