In the realm of the Internet of Things (IoT), there has been a notable increase in the development and efficacy of Intrusion Detection Systems (IDS) that leverage machine learning (ML). Specifically, Federated Learning-based IDSs (FL-based IDS) have witnessed significant growth. These systems aim to mitigate data privacy breaches and minimize the communication overhead associated with dataset collection. Limited hardware resources also pose a significant constraint, preventing numerous IoT devices from actively engaging in FL. However, despite these advancements, certain challenges persist in the research domain. Issues such as elevated communication overhead, the potential for recovering private data, non-independent and identically distributed (Non-IID) data and a scarcity of labeled data remain noteworthy concerns. Additionally, vulnerabilities exist in the server-client communication during the FL process, creating opportunities for attackers to execute poisoning attacks on the client side with relative ease. To address these challenges, our paper introduces a semi-supervised approach for FL-based IDS. Our approach, named FedKD-IDS, employs knowledge distillation with a voting mechanism in place of weighted parameter aggregation and incorporates an anti-poisoning method. We conducted experiments to evaluate the effectiveness of our approach across diverse scenarios, including scenarios with Non-IID and varying data distributions. Additionally, we investigated various rates of malicious collaboration to demonstrate their impact in the federated training process. The results obtained from the real-world N-BaIoT dataset indicate that our approach surpasses the performance of the state-of-the-art (SOTA) SSFL method. Especially, even in the context of a poisoning attack where 50% of all collaborators targeted label flipping attack, FedKD-IDS demonstrated an accuracy of 79%, surpassing SSFL, which achieved only 19.86%. Furthermore, the outcomes also validated that the FedKD-IDS method has the capability to exclude over 85% of malicious collaborators during the aggregation phase of the federated training process.
Read full abstract