Background Given the cardioprotective role of autophagy, this study aimed to investigate the protective effect of exogenous H2S (NaHS) on infectious cardiomyopathy through the inhibition of the AMPK/mTOR pathway. Methods In this study, sepsis models were established by cecal ligation and puncture (CLP) induction in vivo and intraperitoneal injection of NaHS was performed. Autophagy- and apoptosis-related proteins were observed by western blot, isolated myocardial tissue morphology was observed by hematoxylin-eosin (H&E) staining, and myocardial apoptosis was evaluated by the tunnel method. The ultrastructure of autophagy was observed by using an electron transmission electron microscope. Results In an SD rat model of cecum ligation puncture-induced sepsis, the level of autophagy-related proteins was significantly increased, and hematoxylin and eosin staining showed irregular myocardial bands and swollen cardiomyocytes. Following NaHS treatment, the level of autophagy-related proteins decreased, and electron transmission microscopy revealed decreased autophagosomes. Echocardiography suggested an increase in ejection fraction and significant relief of myocardial inhibition. Conclusions Our results suggest that NaHS treatment can attenuate the cellular damage caused by excessive autophagy through the AMPK/mTOR pathway.
Read full abstract