To clarify the reservoir characteristics of laminated shale, the occurrence mechanism of shale oil and its influencing factors in the Gulong Sag, northern Songliao Basin, are studied to better guide the exploration and development of shale oil there. First, X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) are used to characterize the pore types, pore geneses and factors influencing the pore volume in the study area. Second, the organic matter of the samples is extracted with a mixture of dichloromethane and methanol. Total organic carbon (TOC), nitrogen adsorption and Rock-Eval tests are performed on the samples before and after extraction to reveal the pore size distribution after extraction. The factors influencing free and adsorbed shale oil and the lower limit of pore size are discussed in detail. The results show that interparticle pores (interP pores), intraparticle pores (intraP pores), organic matter pores (OM pores) and microfractures can be found in the laminated shale (Q1) in the Gulong Sag, Songliao Basin, and that the interP pores and intercrystalline pores in clay minerals are the main pores. The FE-SEM results show that the diameters of interP pores vary from several hundred nanometers to several microns, and their morphologies are mainly triangular, strip-shaped or irregular. The morphology of the intercrystalline pores in the clay minerals is generally irregular, depending on the crystal type and arrangement of clay minerals. According to the characteristics of the nitrogen adsorption and desorption curves, the pore morphologies are mainly slit-shaped pores, parallel-plate-shaped pores and ink-bottle-shaped pores. The pore size distribution is mostly bimodal, and the pore volume contribution is the greatest in the pore size range of 10~20 nm. Before and after extraction, the overall characteristics of the pore size distribution change only slightly, but the number of micropores increases significantly. Different minerals have different degrees of influence on the proportions of micropores, mesopores and macropores. Quartz mainly inhibits the formation of micropores, while the overall effect on mesopores and macropores is positive depending on the diagenetic period. Feldspar has a strong positive correlation with the micropore and mesopore proportions but is not highly correlated with the macropore proportions. The influence of the carbonate mineral content on the pore volume is not obvious because of its complex composition. The TOC content and vitrinite reflectance (Ro) are the two most important factors controlling free oil and adsorbed oil, and the contents of mineral components, such as felsic minerals, carbonate minerals and clay minerals, have no obvious correlation with shale oil content. With increasing pore volume, the contents of free oil and adsorbed oil increase, but the proportion of adsorbed oil decreases gradually. The correlation between the specific surface area and adsorbed oil content is poor. At normal temperatures and pressures, the lower limit of the pore diameters that can contain free oil is 4 nm, and the lower limit of the pore diameters that can contain movable oil is 10 nm.
Read full abstract