BACKGROUND CONTEXTThe primary treatment method for intramedullary spinal cord tumor (IMSCT) is surgical resection, but this procedure carries a significant risk of neurological damage. Intraoperative neurophysiological monitoring (IONM) has become a necessary adjunctive tool for IMSCT resection. PURPOSEThe current study aimed to explore the application value of D-wave monitoring in IMSCT surgery, and tried to investigate a tailored criterion for its early warning. STUDY DESIGNA retrospective clinical study. PATIENT SAMPLEA retrospective analysis was conducted based on the data of patients who underwent IMSCT surgeries performed by the same neurosurgical team at our hospital. IONM was applied in all surgeries. According to inclusion and exclusion criteria, ultimately 90 patients were enrolled in the study. OUTCOME MEASURESThe McCormick Scale (MMS) was applied to assess the functional outcome through outpatient visits or telephone follow-up at one month and six months postoperatively. Patients with an MMS grade over II one month after surgery were considered to have newly developed postoperative motor dysfunction (PMD). If the MMS grade could be restored to I or II six months after surgery, it was defined as a short-term PMD. Otherwise, it was defined as a long-term PMD. METHODSThe predictive value of different IONM modalities, including somatosensory evoked potential (SEP), muscle motor evoked potential (MEP), and D-wave for PMD, was assessed with sensitivity, specificity, positive predictive value, negative predictive value, and subsequent logistic regression analysis. At last, the cut-off value of the D-wave amplitude reduction ratio for predicting PMD was obtained through the receiver operating characteristic (ROC) curve analysis. RESULTSSEP showed the worst performance in predicting short-term and long-term PMD. Significant MEP changes were indicated as an independent predictive factor for short-term PMD (OR 5.062, 95% CI 1.947–13.166, p=.001), while D-wave changes were demonstrated as an independent predictor for long-term PMD (OR 339.433, 95% CI 11.337–10770.311, p=.001). The optimum cut-off value of the D-wave amplitude reduction ratio for predicting long-term PMD was 42.18%, with a sensitivity of 100% and a specificity of 93.8% (AUC=0.981, p<.001). CONCLUSIONSD-wave monitoring showed extremely high specificity in predicting PMD compared to SEP and MEP monitoring. Moreover, the authors suggested that a D-wave amplitude reduction of over 40% during IMSCT surgery generally indicates long-term PMD for patients.
Read full abstract