We investigate the dynamical interplay between the different triplet-pair spin states that are formed in the intramolecular singlet fission process in a series of pentacene-based dimers covalently bonded to a phenylene linker in ortho, meta, and para positions. Using first-principles calculations and a density matrix quantum dynamical approach we show that the spin dipole-dipole interaction leads to significant population of the quintet spin manifold in these regioisomers when the singlet, triplet and quintet triplet-pair states are quasidegenerate. Furthermore, we also show that the relative arrangement of the pentacene-like moieties has a profound impact on the dynamics of the spin-mixing process, affecting both the relative population of the different spin-states involved in the dynamics and the time scale of the process.
Read full abstract