Intracerebral hemorrhage (ICH) is an acute neurological disorder characterized by high mortality and disability rates. Previous studies have shown that 75% of patients who survive ICH experience varying degrees of neurological deficits. Sphk1 has been implicated in a multitude of phylogenetic processes, including innate immunity and cell proliferation. An in vivo rat model of ICH and an in vitro model of neuronal oxyhemoglobin (OxyHb) were constructed. The expression level of Sphk1 was assessed using western blotting and immunofluorescence, whereas cell death following ICH was evaluated using fluoro-Jade B and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immunofluorescence facilitated the examination of microglial phenotypic alterations, while enzyme-linked immunosorbent assays were used to determine the concentrations of inflammatory markers. Behavioral assays were employed to assess the overall behavioral modifications of animals. Neuronal Sphk1/Sirt1 protein levels gradually increased following the induction of ICH. Elevated Sphk1 expression resulted in increased levels of anti-inflammatory microglia and reduced levels of pro-inflammatory factors. In contrast, suppression of Sphk1 expression resulted in an increased number of dead cells, thereby exacerbating neurological deficits. In vitro findings indicated that the levels of phosphorylated PI3K and AKT proteins increased in conjunction with Sphk1 expression. This study established that after ICH, Sphk1 interacts with Sirt1 to mitigate neuroinflammation, cell death, oxidative stress, and brain edema via the PI3K/AKT signaling pathway. Augmenting expression of Sphk1 significantly can ameliorate neurological impairments induced by ICH, offering novel targets and perspectives for therapeutic interventions in ICH treatment.