Targeting polyamine metabolism is a proven anticancer strategy. Cancers often escape the polyamine biosynthesis inhibitors by increased polyamine import. Therefore, there is much interest in identifying polyamine transport inhibitors (PTIs) to be used in combination therapies. In a search for new PTIs, we serendipitously discovered a LAT-1 efflux agonist, which induces intracellular depletion of methionine, leucine, spermidine, and spermine, but not putrescine. Because S-adenosylmethioninamine is made from methionine, a loss of intracellular methionine leads to an inability to biosynthesize spermidine, and spermine. Importantly, we found that this methionine-depletion approach to polyamine depletion could not be rescued by exogenous polyamines, thereby obviating the need for a PTI. Using 3H-leucine (the gold standard for LAT-1 transport studies) and JPH-203 (a specific LAT-1 inhibitor), we showed that the efflux agonist did not inhibit the uptake of extracellular leucine but instead facilitated the efflux of intracellular leucine pools.