Tuning the dimensionality in halide perovskites provides an opportunity to obtain the properties desired for optoelectronic devices. In this work, we demonstrate the dimensional reduction of 3D halide double-perovskite Cs2AgBiBr6 by systematically introducing alkylammonium organic spacer CH3(CH2)nNH3+ (n = 1, 2, 3, and 6) of varying chain lengths. The single crystals of these materials were grown, and their structures were studied at 23 and -93 °C. The ethylammonium cation led to a formation of a 0D material, whereas all the other three higher alkyl ammonium spacers resulted in two-dimensional materials. The parent material possessed symmetric octahedra, whereas the modified samples led to both inter- and intra-octahedral distortion, thereby reducing the symmetry of constituent octahedra. The reduction in dimensionality led to a blue shift in the optical absorption spectrum. All these low-dimensional materials show excellent stability, and they are employed as absorbers for solar photovoltaics.