Two important basic inference models of fuzzy reasoning are Fuzzy Modus Ponens (FMP) and Fuzzy Modus Tollens (FMT). In order to solve FMP and FMT problems, the full implication triple I algorithm, the reverse triple I algorithm and the Subsethood Inference Subsethood (SIS for short) algorithm are proposed, respectively. Furthermore, the existing reasoning algorithms are extended to intuitionistic fuzzy sets and interval-valued fuzzy sets according to different needs. The purpose of this paper is to study the relationship between intuitionistic fuzzy reasoning algorithms and interval-valued fuzzy reasoning algorithms. It is proven that there is a bijection between the solutions of intuitionistic fuzzy triple I algorithm and the interval-valued fuzzy triple I algorithm. Then, there is a bijection between the solutions of intuitionistic fuzzy reverse triple I algorithm and the interval-valued fuzzy reverse triple I algorithm. At the same time, it is shown that there is also a bijection between the solutions of intuitionistic fuzzy SIS algorithm and interval-valued fuzzy SIS algorithm.
Read full abstract