The array waveguide grating (AWG) demodulation method has been widely used in recent years. However, the resolution and total measurement range of AWG-based Fiber Bragg Grating (FBG) interrogation systems are limited by the output characteristics of AWGs. We designed and fabricated a multi-channel SiO2-based AWG as a key component of FBG Interrogation. To increase the dynamic range of demodulation, a multimode interference coupler (MMI) structure is introduced in the middle of the input waveguide and the input slab waveguide. From the simulation results, the 3-dB bandwidth of the AWG is increased from 1.04 nm to 1.86 nm. We test the performance of the interrogation system based on this AWG. The results demonstrate that the system can achieve continuous demodulation in the C-band, with an interrogation accuracy better than 20.22 pm and a wavelength resolution of 1 pm.