Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton. The role of LRP5 in the axial skeleton, especially in the craniofacial skeleton, is largely unknown. The aim of this study was to investigate the craniofacial phenotype with the LRP5G171V mutation. To understand how LRP5 affects craniofacial bone properties, we analyzed LRP5 high-bone-mass mutant mice carrying the G171V missense mutation (LRP5HBM ). Quantitative microcomputed tomographic imaging and histomorphometric analyses were used to study craniofacial phenotypes and bone density. Histology, immunohistochemistry, and in vivo fluorochrome labeling were used to study molecular mechanisms. LRP5HBM mice showed overall minor changes in the craniofacial bone development but with increased bone mass in the interradicular alveolar bone, edentulous ridge, palatine bone, and premaxillary suture. Elevated osteocyte density was observed in LRP5HBM mice, along with increased Runx2 expression and unmineralized bone surrounding osteocytes. Meanwhile, LRP5HBM mice exhibited increased osteoprogenitors, but no significant changes were observed in osteoclasts. This led to a high-bone-mass phenotype, and an increased osteocyte density in the alveolar bone and edentulous ridge. LRP5HBM mice display increased bone mass in the alveolar bone with minor changes in the craniofacial morphology. Collectively, these data elucidated the important role of LRP5 in axial bone development and homeostasis and provided clues into the therapeutical potential of LRP5 signaling in treating alveolar bone loss.
Read full abstract