Orexins are wake-promoting neuropeptides that originate from hypothalamic neurons projecting to widespread brain areas throughout the central nervous system. They modulate various physiological functions via their orexin 1 (OXR1) and 2 (OXR2) receptors, including sleep-wake rhythm but also cognitive functions such as memory formation. Here, we provide a detailed analysis of OXR1 and OXR2 mRNA expression profiles in the dorsal hippocampus as a key region for memory formation, using RNAscope multiplex in situ hybridization. Interconnected subareas relevant for cognition and memory such as the medial prefrontal cortex and the nucleus reuniens of the thalamus were assessed as well. Both receptor types display distinct profiles, with the highest percentage of OXR1 mRNA-positive cells in the hilus of the dentate gyrus. Here, the content of OXR1 mRNA per cell was slightly modulated at selected time points over a 12h light/ 12 dark light phase. Using RNAScope and quantitative polymerase chain reaction approaches, we began to address a cell-type specific expression of OXR1 in hilar GABAergic interneurons. The distinct expression profiles of both receptor subtypes within hippocampal subareas and circuits provide an interesting basis for future interventional studies on orexin receptor function in spatial and contextual memory.
Read full abstract