The prevalence of the Internet addiction disorder (IAD) has been on the rise, making it increasingly imperative to explore the neurophysiological markers of it. Using the whole-brain imaging approach of EEG microstate analysis, which treats multichannel EEG recordings as a series of quasi-steady states, similar as the resting-state networks found by fMRI, the present study aimed to investigate the specificity of the IAD in class C of the four canonical microstates. The existing EEG data of 40 participants (N=20 for each group) was used, and correlation between the time parameters of microstate C and the performance of the Go/NoGo task was analyzed. Results suggested that the duration and coverage of class C were significantly reduced in the IAD group as compared to the healthy control (HC) group. Furthermore, the duration of class C had a significant inverse correlation with Go RTs in the IAD group. These results implied that class C might serve as a neurophysiological marker of IAD, helping to understand the underlying neural mechanism of inhibitory control in IAD.
Read full abstract