This study aimed to predict residential apartment prices in Latvia and Brazil using algorithms from machine learning, fuzzy logic, and civil engineering principles, with a focus on overcoming multicollinearity challenges. To explore the market dynamics, we conducted four initial experiments in the central regions of Riga and Jelgava (Latvia), as well as São Paulo and Niterói (Brazil). Data were collected from real estate advertisements, supplemented by civil engineering inspections, and analyzed following international valuation standards. The research integrated human decision-making behavior with machine learning and the Apriori algorithm. Our methodology followed five key stages: data collection, data preparation for association rule mining, the generation of association rules, fuzzy logic analysis, and the interpretation of model accuracy. The proposed method achieved a mean absolute percentage error (MAPE) that ranged from 5% to 7%, indicating strong alignment with market trends. These findings offer valuable insights for decision making in urban development, particularly in optimizing renovation priorities and promoting sustainable growth.
Read full abstract