Under the auspices of the International Decade of Ocean Exploration, scientists from Oregon State University and the Hawaii Institute of Geophysics, along with representatives from the several South American countries which border the Nazca Plate, are intensively studying the origin and economic importance of metalliferous sediments which form extensive deposits on and near the East Pacific Rise. The sediments, enriched in iron, manganese, copper, nickel, zinc, silver, molybdenum, and lead are mineralogically and chemically similar to deposits cored by the “Glomar Challenger”, implying a common origin. The metalliferous sediments are especially abundant in an extensive basin, the Bauer Deep, which occurs about 800 km east of the East Pacific Rise. Elemental and isotopic data, supported by geologic information provided by cores and by geophysical instrumentation, suggest that the enriched elements in the sediments originate by the interplay of volcanism and sea water, by precipitation from sea water alone, and perhaps by the influence of deep-ocean physical processes acting on detritus transported from the continents or from the basaltic East Pacific Rise. An additional objective of the project is to define the possible relationship between marine metalliferous sediments of the plate to ore deposits of the Andean Cordillera. As pointed out by several writers, much of the earth's economic mineralization occurs along zones of convergence between subducted oceanic crust, including metalliferous sediments if present, and continental margins. Field and geochemical techniques are being applied to determine if sediments are in fact subducted beneath the Andean margin, and if they are remobilized into the continental ore deposits of the Andes. Isotopic tracers may prove most useful in testing this relation. Before the model can be tested rigorously, one must know not only the important chemical parameters of the ocean sediment that may be subducted, but also those of the pertinent rock and ore bodies of the South American Cordillera.