Abstract The dissipation of low-mode internal tides as they propagate through mesoscale baroclinic eddies is examined using a series of numerical simulations, complemented by three-dimensional ray tracing calculations. The incident mode-1 internal tide is refracted into convergent energy beams, resulting in a zone of reduced energy flux in the lee of the eddy. The dissipation of internal tides is significantly enhanced in the upper water column within strongly baroclinic (anticyclonic) eddies, exhibiting a spatially asymmetric pattern, due to trapped high-mode internal tides. Where the eddy velocity opposes the internal tide propagation velocity, high-mode waves can be trapped within the eddy, whereas high modes can freely propagate away from regions where eddy and internal wave velocities are in the same direction. The trapped high modes with large vertical shear are then dissipated, with the asymmetric distribution of trapping leading to the asymmetric distribution of dissipation. Three-dimensional ray tracing solutions further illustrate the importance of the baroclinic current for wave trapping. Similar enhancement of dissipation is also found for a baroclinic cyclonic eddy. However, a barotropic eddy is incapable of facilitating robust high modes and thus cannot generate significant dissipation of internal tides, despite its strong velocities. Both energy transfer from low to high modes in the baroclinic eddy structure and trapping of those high modes by the eddy velocity field are therefore necessary to produce internal wave dissipation, a conclusion confirmed by examining the sensitivity of the internal tide dissipation to eddy radius, vorticity, and vertical scale. Significance Statement The oceanic tides drive underwater waves at the tidal frequency known as internal tides. When these waves break, or dissipate, they can lead to mixing of oceanic heat and salt which impacts the ocean circulation and climate. Accurate climate predictions require computer models that correctly represent the distribution of this mixing. Here we explore how an oceanic eddy, a swirling vortex of order 100–400 km across, can locally enhance the dissipation of oceanic internal tides. We find that strong ocean eddies can be hotspots for internal tide dissipation, for both clockwise and anticlockwise rotating vortices, and surface-enhanced eddies are most effective at internal tide dissipation. These results can improve climate model representations of tidally driven mixing, leading to more credible future predictions.