Ammonia (NH3) detection is crucial for both harnessing hydrogen energy and safeguarding public health. However, the NH3 sensors based on semiconductors is currently constrained by their necessity to operate at elevated temperatures and their limited ability to distinguish NH3 from other gases. In this study, the high oxygen vacancy W@WO2.92 core-shell nanostructures have been synthesized by pulsed laser ablation in water. The gas sensors based on W@WO2.92 nanoparticles response to NH3 with high sensitivity (|Ra-Rg|/Ra=72.6 %@100 ppm, Ra and Rg represent the resistance of the material when exposed to air and the test gas, respectively.) at room temperature with detection limit of 730 ppb. Additionally, the response to NH3 can achieve 55 % even at 5℃, which plays a great role in timely detection of NH3 during low temperature transportation. Furthermore, the sensors reveal outstanding selectivity toward NH3 in the presence of 11 other potential interfering gases. This research presents a groundbreaking strategy, holding significant potential for the development of high-performance NH3 sensors that operate efficiently at low temperatures.
Read full abstract