This article starts from the premise that one of the global control strategies of the Permanent Magnet Synchronous Motor (PMSM), namely the Direct Torque Control (DTC) control strategy, is characterized by the fact that the internal flux and torque control loop usually uses ON–OFF controllers with hysteresis, which offer easy implementation and very short response times, but the oscillations introduced by them must be cancelled by the external speed loop controller. Typically, this is a PI speed controller, whose performance is good around global operating points and for relatively small variations in external parameters and disturbances, caused in particular by load torque variation. Exploiting the advantages of the DTC strategy, this article presents a way to improve the performance of the sensorless control system (SCS) of the PMSM using the Proportional Integrator (PI), PI Equilibrium Optimizer Algorithm (EOA), Fractional Order (FO) PI, Tilt Integral Derivative (TID) and FO Lead–Lag under constant flux conditions. Sliding Mode Control (SMC) and FOSMC are proposed under conditions where the flux is variable. The performance indicators of the control system are the usual ones: response time, settling time, overshoot, steady-state error and speed ripple, plus another one given by the fractal dimension (FD) of the PMSM rotor speed signal, and the hypothesis that the FD of the controlled signal is higher when the control system performs better is verified. The article also presents the basic equations of the PMSM, based on which the synthesis of integer and fractional controllers, the synthesis of an observer for estimating the PMSM rotor speed, electromagnetic torque and stator flux are presented. The comparison of the performance for the proposed control systems and the demonstration of the parametric robustness are performed by numerical simulations in Matlab/Simulink using Simscape Electrical and Fractional-Order Modelling and Control (FOMCON). Real-time control based on an embedded system using a TMS320F28379D controller demonstrates the good performance of the PMSM-SCS based on the DTC strategy in a complete Hardware-In-the-Loop (HIL) implementation.
Read full abstract