Enhancing buffering capacity, flexibility, and energy absorption to withstand large deformations in structure remains a challenge. Bio-inspired horseshoe lattice structures, with their curved trusses, exhibit distinct mechanical characteristics compared to conventional metamaterials. However, their mechanical properties under in-plane compression have been rarely explored. This study characterised and modelled three types of novel 3D-printed horseshoe lattice structures, totalling 12 configurations, with unit cell geometry varying based on cell-wall angles ranging from 120°to 210°. The implementation of the FE simulation based on the three-network viscoplastic (TNV) model showed good agreement with the experiments. The results demonstrated that the cell-wall angle in the geometry and the cross-lap joint topology were significantly associated with the failure mechanism of the unit cell and the overall non-linear mechanical behaviour. Increasing the cell-wall angles can prevent beams from failing due to bending and buckling fractures, facilitate the initiation of internal contacts and stretching during in-plane compression. This reveals a configurable mechanism where the flexibility and stability of the lattice structure can trigger strain hardening, resulting in an increase in load-bearing capacity. The sensitivity to strain hardening varies depending on the order of cross-laps within the topology. A colour-pattern tracking method was employed to monitor the progressive stabilisation of lattice structures, and offering a novel approach for the future design of flexible, configurable, and programmable horseshoe-based lattice structures.
Read full abstract