We present results from machine-learning-based path integral molecular dynamics simulations that describe isomerization paths articulated via collective proton transfers along mixed, cyclic tetramers combining water and ammonia at cryogenic conditions. The net result of such isomerizations is a reverse of the chirality of the global hydrogen-bonding architecture along the different cyclic moieties. In monocomponent tetramers, the classical free energy profiles associated with these isomerizations present the usual symmetric double-well characteristics whereas the reactive paths exhibit full concertedness among the different intermolecular transfer processes. Contrastingly, in mixed water/ammonia tetramers, the incorporation of a second component introduces imbalances in the strengths of the different hydrogen bonds leading to a partial loss of concertedness, most notably at the vicinity of the transition state. As such, the highest and lowest degrees of progression are registered along OH···N and O···HN coordinations, respectively. These characteristics lead to polarized transition state scenarios akin to solvent-separated ion-pair configurations. The explicit incorporation of nuclear quantum effects promotes drastic depletions in the activation free energies and modifications in the overall shape of the profiles which include central plateau-like stages, indicating the prevalence of deep tunneling regimes. On the other hand, the quantum treatment of the nuclei partially restores the degree of concertedness among the evolutions of the individual transfers.