Synthetic organic chemistry underpins many scientific disciplines. The development of new synthetic methods proceeds with the ultimate intention of providing access to novel structural motifs or providing safer, increasingly efficient, or more economical chemical reactions. To facilitate the identification and application of new methods in solving real synthetic problems, this Account will highlight the benefits of providing a fuller picture of both the scope and limitations of new reactions, with a primary focus on the evaluation of functional group tolerance and stability of a reaction using intermolecular screens. This Account will begin with a discussion on reaction evaluation, specifically considering the suitability of a given reaction for application in target-oriented synthesis. A comparison of desirable and essential criteria when choosing a reaction is given, and a short discussion on the value of negative and qualitative data is provided. The concept of intermolecular reaction screening will be introduced, and a direct comparison with a traditional substrate scope highlights the benefits and limitations of each and thus the complementary nature of these approaches. In recent years, a number of ad hoc applications of intermolecular screens to evaluate the functional group tolerance of a reaction or the stability of functional groups to a given set of reaction conditions have been reported, and will be discussed. More recently, we have developed a formal high-throughput intermolecular screening protocol that can be utilized to rapidly evaluate new chemical reactions. This simple and rapid protocol enables a much broader evaluation of a reaction in terms of functional group tolerance and the stability of chemical motifs to the reaction conditions than is feasible with a typical reaction scope. The development, evaluation, and application of this method within our group will be discussed in detail, with both the potential benefits and limitations highlighted and discussed. In addition, we will discuss more recent applications of intermolecular screens from both industrial and academic groups. Modifications in protocols and applications will be highlighted, including problem based evaluations, assessment of biomolecule compatibility, establishment of relative rate data, and the identification of new reactivity. Such screens have been applied in diverse chemistries including C-H functionalization reactions, frustrated Lewis-pair-catalyzed hydrogenations, heterogeneous catalysis, photoredox catalysis, enantioselective organocatalysis, and polymer science. We feel that the application of intermolecular screens to such a diversity of reactions highlights the practical simplicity of such screens. A summary of the applications and potential utility of intermolecular reaction evaluation is provided.
Read full abstract