This project aims to study the nature of interaction and orientation of selected drugs such as dexamethorphan HBr (DXM), diphenhydramine HCl (DPH), and lidocaine HCl (LDC) inclusion complexes with hydroxyl-propyl ß-cyclodextrin (HP-ß-CD) using 1HNMR spectroscopy, 2D-NMR ROESY and molecular-modeling techniques. Freeze-drying technique was used to formulate the inclusion complexes between DXM, DPH and LDC with HP-ß-CD (1:1 M ratio) in solid state. Inclusion complex formation was initially characterized by Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Further characterization of inclusion complexes to determine the interaction of DXM, DPH and LDC with HP-β-CD was performed using the 1HNMR spectroscopy, 2D-NMR ROESY and molecular modeling techniques. Inclusion complexes of DXM, DPH and LDC with HP-ß-CD were successfully prepared using the freeze-drying technique. Preliminary studies with FT-IR, DSC, XRD and SEM indicated the formation of inclusion complexes of DXM, DPH and LDC with HP-β-CD at 1:1 M ratio. 1HNMR study showed a change in proton chemical shift upon complexation. 2D-NMR ROESY (two-dimensional) spectroscopy gave an insight into the spatial arrangement between the host and guest atoms. 2D-ROESY experiments further predicted the direction of orientation of guest molecules, indicating the probability that amino moieties of DXM, DPH and LDC are inside the hydrophobic HP-ß-CD cavity. Cross-peaks of inclusion complexes demonstrated intermolecular nuclear Overhauser effects (NOE) between the amino protons in DXM, DPH and LDC and H-atoms of HP-ß-CD. Molecular modeling studies further confirmed the NMR data, providing a structural basis of the individual complex formations. Microsecond time-level molecular dynamics and metadynamics simulations indicate much stronger binding of DXM to HP-ß-CD and more dynamic behavior for DPH and LDC. In particular, LDC can exhibit multiple binding modes, and even spent some time (∼1–2%) out of the carrier, proving the dynamic nature of the complex. To conclude, 2D-NMR and molecular dynamic simulations elucidate the formation of inclusion complexes and intermolecular interactions of DXM, DPH and LDC with HP-ß-CD.
Read full abstract