Excitation energies from the ground state for 86 fine-structure levels as well as oscillator strengths and radiative decay rates for all fine-structure transitions among the levels of the terms (1s22s22p6)3s2(1S), 3s3p(1,3Po), 3s3d(1,3D), 3s4s(1,3S), 3s4p(1,3Po), 3s4d(1,3D), 3s4f(1,3Fo), 3p2(1S, 3P, 1D), 3p3d(1,3Po, 1,3Do, 1,3Fo), 3p4s(1,3Po), 3p4p(1,3S, 1,3P, 1,3D), 3p4d(1,3Po, 1,3Do, 1,3Fo), 3p4f(1,3D, 1,3F, 1,3G) and 3d2(1S, 3P, 1D,3F,1G) of V XII are calculated using extensive configuration-interaction wave functions obtained with the configuration-interaction version 3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit–Pauli approximation. In order to keep our calculated energy splittings as close as possible to the corresponding experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The mixing among several fine-structure levels is found to be very strong. Our fine-tuned excitation energies, including their ordering, are in excellent agreement (better than 0.25%) with the available experimental results. From our calculated radiative decay rates, we have also calculated the radiative lifetimes of fine-structure levels. Generally, our calculated data for the excitation energies and radiative decay rates are found to agree reasonably well with other available calculations. However, significant differences between our calculated lifetimes and those from the calculation of Froese Fischer et al (2006 At. Data Nucl. Data Tables 92 607) for a few fine-structure levels, mainly those belonging to the 3p4d configuration, are noted and discussed. Also, our calculated lifetime for the longer-lived level 3s3p(3P1) is found to be in excellent agreement with the corresponding value of Curtis (1991 Phys. Scr. 43 137).