In addition to their well-known anxiolytic functions, benzodiazepines produce hyperphagia. Previously, we reported that the benzodiazepine, chlordiazepoxide (CDP), increased consumption of both normally-preferred and normally-avoided taste stimuli during long-term (1 h) tests, primarily through changes in licking microstructure patterns associated with hedonic taste evaluation, whereas there was little effect on licking microstructure measures associated with post-ingestive feedback. In this study, we further examined the hedonic and motivational specificity of CDP effects on ingestive behavior. We tested brief access (15 s) licking responses for tastants spanning all taste qualities after treatment with either CDP (5 or 10 mg/kg) or the non-benzodiazepine anxiolytic, buspirone (1.5 or 3 mg/kg). A between-subjects, counterbalanced design compared the CDP or buspirone effects on licking responses for water and a range of weak to strong concentrations of NaCl, Q-HCl, citric acid, MSG, saccharin, and capsaicin under water-restricted (23 h) conditions; and sucrose, saccharin, and MSG under water-replete conditions. In a dose dependent manner, CDP increased licking for taste stimuli that were normally-avoided after saline treatment, with a notable exception observed for the trigeminal stimulus, capsaicin, which was not affected at any concentration or drug dose, suggesting a taste-specific effect of CDP on orosensory processing. Under water-replete conditions, CDP dose-dependently increased licking to normally-accepted concentrations of sucrose, saccharin, and MSG. There was no effect of either drug on licks for water under either water-restricted or water-replete conditions. Buspirone slowed oromotor coordination by increasing brief interlick intervals, but it did not affect licking for any concentrations of the tastants. Overall, these results indicate that benzodiazepines selectively enhance the hedonic acceptance of gustatory orosensory stimuli, independent of general anxiolytic or oromotor coordination effects, or physiological states such as thirst.
Read full abstract