Interleukin-6 (IL-6) is a highly pro-inflammatory cytokine involved in the etiopathology of several inflammatory diseases and cancer. As so, the inhibition of IL-6 signaling pathways has emerged as an attractive therapeutic avenue for the treatment of several chronic diseases. Since IL-6 trans-signaling was described as the pathological branch of IL-6, selective inhibitors were developed. Next-generation variants with increased trans-signaling specificity and potency emerged as great candidates for the treatment of several diseases, with reduced off-target effects. The highly time-consuming and costly processes involving recombinant protein production, however, have hampered the progress of anti-cytokine pharmaceuticals in clinic so far. Herein, we developed gene therapeutic modalities of IL-6-trans-signaling inhibitors as alternatives for sustained recombinant protein secretion. By using an IL-6-dependent lymphoma cell line and xenograft tumor model, we demonstrated the superior inhibitory potential of second-generation anti-IL-6 trans-signaling therapeutic. We compared the efficiency of distinct gene delivery modalities using a bioluminescent biomarker probe and observed consistent protein production via cell-based delivery. When delivered intratumorally, genetically engineered sgp130FlyRFc-secreting cells significantly reduced tumor burden and increased animal survival, representing a promising therapeutic avenue to be explored in clinically relevant gene delivery applications.
Read full abstract