Alkaline water is toxic to cultured aquatic animals that frequently live in pH-neutral freshwater. Overfishing and habitat destruction have contributed to the decline in the wild sturgeon population; consequently, the domestic hybrid sturgeon has become an increasingly important commercial species in China. Hybrid sturgeons are widely cultured in alkaline water, but little is known about the effects of alkalinity stress on hybrid sturgeon liver tissues. We exposed hybrid sturgeons to four alkaline concentrations (3.14 ± 0.02 mmol/L, 7.57 ± 0.08 mmol/L, 11.78 ± 0.24 mmol/L and 15.46 ± 0.48 mmol/L). Histopathology, biochemical index assessment, gene expression level detection and metabolomics analysis were used to investigate the negative effects on liver functions following exposure to NaHCO3. Livers exposed to alkaline stress exhibited severe tissue injury and clear apoptotic characteristics. With increased exposure concentrations, the hepatic superoxide dismutase, catalase, glutathione peroxidase and alkaline phosphatase activities significantly decreased in a dose-dependent manner. NaHCO3 exposure up-regulated the transcriptional levels of apoptosis/ferroptosis-related genes in livers. Similarly, the expression trends of interleukin-1β and heat shock protein genes also increased in high-alkalinity environments. However, the expression levels of complement protein 3 significantly decreased (p < 0.05). Hepatic untargeted metabolomics revealed the alteration conditions of various metabolites associated with the antioxidant response, the ferroptosis process and amino acid metabolism (such as beta-alanine metabolism; alanine, aspartate and glutamate metabolism; and glycine, serine and threonine metabolism). These data provided evidence that NaHCO3 impaired immune functions and the integrity of hybrid sturgeon liver tissues by mediating oxidative-stress-mediated apoptosis and ferroptosis. Our results shed light on the breeding welfare of domestic hybrid sturgeons and promote the economic development of fisheries in China.
Read full abstract