This study investigates the effect of silicon carbon nitride (SiCN) as an interlayer for ZnO-based resistive random access memory (RRAM). SiCN was deposited using plasma-enhanced chemical vapor deposition (PECVD) with controlled carbon content, achieved by varying the partial pressure of tetramethylsilane (4MS). Our results indicate that increasing the carbon concentration enhances the endurance of RRAM devices but reduces the on/off ratio. Devices with SiCN exhibited lower operating voltages and more uniform resistive switching behavior. Oxygen migration from ZnO to SiCN is examined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, promoting the formation of conductive filaments (CFs) and lowering set voltages. Additionally, we examined the impact of top electrode oxidation on RRAM performance. The oxidation of the Ti top electrode was found to reduce endurance and increase low resistive state (LRS) resistance, potentially leading to device failure through the formation of an insulating layer between the electrode and resistive switching material. The oxygen storage capability of SiCN was further confirmed through high-temperature stress tests, demonstrating its potential as an oxygen reservoir. Devices with a 20 nm SiCN interlayer showed significantly improved endurance, with over 500 switching cycles, compared to 62 cycles in those with a 5 nm SiCN layer. However, the thicker SiCN layer resulted in a notably lower on/off ratio due to reduced capacitance. These findings suggest that SiCN interlayers can effectively enhance the performance and endurance of ZnO-based RRAM devices by acting as an oxygen reservoir and mitigating the top electrode oxidation effect.