A coherence-based, or interferometric approach to spectral analysis of charge-exchange recombination (CXR) emission radiation from high-temperature plasma probed or heated using energetic neutral beams, offers a number of advantages over wavelength-domain instruments. The spectral-line shift and broadening are obtained from measurements of the spectral coherence at a given fixed time delay. The coherence is monitored by first approximately isolating the spectral line of interest using an interference filter and subsequently imaging the spectral scene using a field-widened electro-optic path-delay-modulated polarization interferometer. Interferometers have the advantage of high-light throughput (no slit aperture). Moreover, because the spectral information is encoded at harmonics of the electro-optic modulation frequency, a single detector suffices to capture the spectral information, thereby opening the possibility for time-resolved two-dimensional spectral imaging. When unwanted spectral features are passed by the interference filter, the interpretation of the coherence phase and amplitude images can become ambiguous. By modulating the particle beam source, however, we show that coherence imaging using a single-delay modulatable interferometer can distinguish and characterize the Doppler-broadened CXR emission component against a significant background of continuum and intrinsic radiation, or pollution from nearby spectral features.
Read full abstract