Topological interference management (TIM) is considered under the condition that only topology-related information is available at the transmitters, but no accurate channel state information is fed back to them, which is capable of significantly reducing the overhead imposed on the network. TIM schemes can be classified into two broad categories, relying either on a fixed topology or on alternating connectivity. In this paper, we review the family of TIM schemes. Specifically, for the fixed topology, we discuss the attainable degrees of freedom (DoFs) under the condition that the channel coefficient values are either constant or time varying. For constant channel coefficients, we discuss the multiple groupcast networks/multiple unicast networks, interference channel networks, and interference broadcast channel networks; while for time-varying channel coefficients, we discuss interference channel networks and interference broadcast channel networks. Furthermore, in the context of alternating connectivity, we discuss the attainable DoF for interference channel networks, as well as X networks, vector broadcast channel networks, and interference broadcast channel networks. Finally, promising research directions are identified for TIM schemes.