The interfacial properties of nanocellulose and cement matrix are the key factors affecting the mechanical properties of composite materials. However, it is challenging to study the interface combination through conventional experiments and microscopic characterization techniques. Molecular dynamics simulation (MD), as a nanoscale analytical method, can be used to calculate and analyze the strength, deformation, destruction and interfacial interaction of materials on the atomic scale. Since the existing methods of C-S-H modeling and fiber pull-out from the matrix in molecular dynamics simulations were not suitable for cellulose/C-S-H composite models. In this paper, a molecular dynamics simulation method for nanocellulose cement matrix composites was proposed. Based on the embedded composite model, the tensile stress-strain, interfacial interaction energy, hydrogen bond, and interface failure mode were studied when cellulose was pulled out of the matrix. The results showed that adding cellulose could improve the local ductility and tensile strength of cement matrix materials. The interfacial interaction energy between cellulose and C-S-H was approximately −1.09 J/m2, which was much higher than that between carbon nanotubes and C-S-H. Cellulose would adsorb hydrogen and oxygen atoms on H2O, OH− and silica tetrahedron in C-S-H. In the pull-out simulation of cellulose in C-S-H, C-S-H on the surface of cellulose would be destroyed and attached to the cellulose surface and moved along with it, indicating that cellulose could play a good bridging role in the matrix. The simulation results revealed the action mechanism of cellulose in cement matrix materials.
Read full abstract