Amphotericin B, an acquainted antifungal drug, has reattracted the attention of most scholars due to its one important advantage of making the fungus less resistant. Amphotericin B's antifungal properties are derived from its ability to interact with ergosterols on the fungal cells' membrane to form pores. However, the cholesterol in the human cell membranes is similar in structure to ergosterol, which cause the drug to produce certain toxicity and make the clinical use of amphotericin B limited. The study of the interaction between amphotericin B and lipid monolayer in the presence of cholesterol or ergosterol is crucial to understanding the mechanism of effect of the drug on cell membranes. Langmuir monolayer as a model for half of cell membranes can precisely control the proportion of components and the solution environment, which has been used to do a lot of research about the interaction of amphotericin B with lipids. It is noteworthy that some ions associated with life activities play an important role in it, such as calcium ions. In this work, the surface pressure-mean molecular area isotherms, elastic modulus and the surface pressure-time curves of DPPC/DOPC/sterol mixed monolayer with or without amphotericin B were studied in the different concentration of calcium ions. The morphology of the Langmuir-Blodgett films transferred on the mica were observed by atomic force microscopy. The results shown that AmB changed the elastic modulus and surface morphology of DPPC/DOPC/sterol mxied monolayer, which was significantly different with different types of sterols. Calcium ions can regulate the effect of this drug, which was clearly different due to different types of sterols. This work provides useful information to further understand the influence mechanism of calcium ions on the interaction between AmB and phospholipid/sterol monolayer, which is helpful to find out the effect mechanism of calcium ion on the interaction between AmB and phospholipid monolayer containing ergosterol or cholesterol and to understand the mechanism of AmB influencing on the membrane of fungal or human cells.
Read full abstract